

ELEVATOR CABLES

We at Xtracab Cables through our in-house R & D, developed an Elevator Cable according to British Standard to meet the long awaited requirement of Indian Elevator Companies, who are till now Importing such cables to full-fill their needs. We are already supplying Elevator Cables to ECE Industries Ltd. (Elevator Division) since last so many years and according to them our product is a big success for them as it has reduced their cost and time. It is an advantage to have an Indian product so that urgent requirement can be full-filled on time and the product could be modified according to the customer's need if any.

CONSTRUCTION OF CABLE

The Cable shall comprise 4 upto and including 24 flexible conductor with nominal cross-section areas from 0.75mm2 to 2.5mm2. The Annealed bare copper conductor complying with the requirement of BS: 6360. The conductor may tinned as required by customer. The Insulation consisting of PVC type TI-2 PVC Insulation, complying with the requirement of BS: 6746. The Sheath consists of PVC type TM2 PVC sheath complying with the requirement of BS: 6746. The sheath extruded in a single layer on the cores laid parallel. The Composition of the cable according to the nominal cross-section area of conductors are as follows:

Nominal cross-sectional Area mm2	Numbers of cores				
0.50	4,6,12,16,20 and 24				
0.75	4,6,12,16,20 and 24				
1.00	4,6,12,16,20 and 24				
1.50	4,6, and 12				
2.50	4,6, and 12				

The cores are laid parallel in grouped, closely side by side and covered with sheath comply with the following for

Numbers of cores	4	6	12	16	20	24
Numbers of Groups X Numbers of cores in each Group	2 x 2	3 x 3	3 x 4	4 x 4	5 x 4	6 x 4

A tearing thread be added inside each core group. It shall be possible to separate the cores without damage to the insulation. Stain-bearing thread of textile material may be included in each core group, replacing one or more cores.

TEST DESCRIPTION

Constructional and dimensional test.

- *Check on construction.
- *Measurement of insulation thickness.
- *Measurement of sheath thickness.

Mechanical properties on insulation

- *Tensile strength before ageing.
- *Elongation at break before ageing.
- *Tensile strength after ageing in air.
- *Elongation at break after ageing in air.
- *Loss of mass test.
- *Hot pressure test.
- *Cold bend test.

Mechanical properties of sheath

- *Tensile strength before ageing.
- *Elongation at break before ageing.
- *Tensile strength after ageing in air.
- *Elongation at break after ageing in air.
- *Loss of mass test.
- *Cold elongation test.
- *Cold bend test.

Mechanical strength of complete cable

- *Static Flexibility test.
- *Tensile strength of strain-bearing member

Conductor		Radial	Thickness of			Minimum
Nominal cross- sectional	Maximum diameter of wire	thickness of insulation	sheath and clearances			Insulation resistance at 70°C
area			C 1	C2	C3	
mm²	mm	mm	mm	mm	mm	M Ω Km
0.50	0.21	0.6	1.0	0.9	1.5	0.011
0.75	0.21	0.6	1.0	0.9	1.5	0.011
1.00	0.21	0.6	1.0	0.9	1.5	0.010
1.50	0.26	0.7	1.0	1.0	1.5	0.010
2.50	0.26	0.8	1.0	1.0	1.8	0.009